

## Effect of inorganic and organic fertilizers on the yield of banana cv Grand Naine

AM TIRMALI, AA BHAGAT and CD BADGUJAR

National Agricultural Research Project, Ganeshkhind, Pune 411007 Maharashtra, India

Email for correspondence: aniltirmali@gmail.com

© Society for Advancement of Human and Nature 2019

Received: 5.5.2019/Accepted: 30.5.2019

### ABSTRACT

The field study on effect of inorganic and organic fertilizers on yield of banana cv Grand Naine was conducted at Ganeshkhind, Pune, Maharashtra to find out the suitable and sustainable integrated fertilizer dose for banana. The investigations included eleven treatment combinations replicated thrice. The treatment 75 per cent N + recommended dose of P and K (RPK) + *Acetobacter* 25 g/plant + phosphate solubilising bacteria (PSB) 25 g/plant recorded significantly highest gross monitory returns of Rs 7,33,553. The highest net monitory income of Rs 5,31,126 and B-C ratio (3.62) were also obtained under the same treatment. There was a saving of 25 per cent nitrogen through chemical fertilizer. The highest sustainability value index (SVI) was recorded under the same treatment (0.93) followed by the treatment recommended dose of fertilizer (RDF) + *Acetobacter* 25 g/plant + PSB 25 g/plant (0.89); hence these treatments were recommended for banana production in the region.

**Keywords:** Banana; Grand Naine; sustainability value index; economics

### INTRODUCTION

India is the largest producer of banana in the world with 29.7 million tonnes from an area of 0.88 million hectares with a productivity of 37 MT/ha (Anon 2018).

Banana is important fruit crop of Maharashtra state after mango and pomegranate. Maharashtra is now second largest state after Tamil Nadu in respect of area under banana. Now almost all the districts of Maharashtra except Nasik and Nagpur are growing banana crop. Northern districts of Maharashtra viz Jalgaon, Dhule and Nandurbar have been growing banana since 1890. The district like Pune, Solapur, Ahmednagar and Kolhapur are the new districts which have started growing banana for the last two decades.

Banana is a heavy feeder of nutrients for optimal growth, development and yield. Long term and indiscriminate application of inorganic fertilizers without sufficient integration of organic manures results in depletion of soil organic matter. This ultimately checks the microbial biomass of the soil profile, loosens its

biological dynamics and often results in extreme situations for the soil, crop and climate involved. Nowadays a new concept has developed for utilization of available resources viz organic, inorganic and microbial cultures with an integrated approach for sustainable yield. This concept of integrated nutrient management helps to maintain pollution level of soil, water and surroundings and also maintains soil fertility at an optimum level.

In the present study different combinations of nitrogen and potassium along with bio-fertilizers were used in order to reduce cost of nutrient inputs without affecting the fruit yield and quality.

### MATERIAL and METHODS

The present experiment was carried out at Ganeshkhind, Pune, Maharashtra during 2012-13, 2013-14 and 2014-15.

Eleven treatments on nutrient combination were applied to Grand Naine banana viz T<sub>1</sub> [75% N + recommended dose of P and K (RPK) + *Acetobacter* 25 g/plant + phosphate solubilizing bacteria (PSB) 25

g/plant],  $T_2$  [Recommended dose of fertilizer (RDF) + *Acetobacter* 25 g/plant + PSB 25 g/plant],  $T_3$  [Gross recommended dose of fertilizer (GRDF) + vesicular-arbuscular mycorrhiza (VAM) 25 g/plant],  $T_4$  (GRDF),  $T_5$  [75% N + 75% P + recommended dose of K (RK) + *Acetobacter* 25 g/plant + PSB 25 g/plant],  $T_6$  [Recommended dose of N (RN) + 75% N + RK + *Acetobacter* 25 g/plant + PSB 25 g/plant],  $T_7$  (RDF + *Acetobacter* 25 g/plant),  $T_8$  (75% N + RPK + *Acetobacter* 25 g/plant),  $T_9$  (RN + 75% N + RK + *Acetobacter* 25 g/plant),  $T_{10}$  (RN + 75% N + RK + PSB 25 g/plant),  $T_{11}$  (75% N + 75% P + RK + *Acetobacter* 25 g/plant)

The treatments were replicated thrice in randomized block design. The chemical fertilizers, bio-fertilizers and FYM were applied in split as per recommendation at 30, 75, 120, 210, 255 and 300 days after planting. The RDF used in present experiment was 200:40:200 g NPK/plant.

The data on growth, duration and yield attributes were recorded and subjected to statistical analysis as suggested by Panse and Sukhatme (1985). Cost of production, gross monetary and net monetary income, B-C ratio and sustainability value index (SVI)

were computed. SVI was calculated by using the formula given by (Singh et al 1990):

$$SVI = \frac{V - SD}{V_{max}}$$

where V= Estimated average net monetary income from economic produce, SD= Estimated standard deviation,  $V_{max}$ = Maximum net monetary income from economic produce

## RESULTS and DISCUSSION

The data pertaining to the yield and economics of banana are depicted in Table 1. Among the treatments the treatment  $T_1$  (75% N + RPK + *Acetobacter* 25 g/pl + PSB 25 g/plant) recorded significantly highest gross monetary returns of Rs 7,33,553. The treatment  $T_2$  (RDF + *Acetobacter* 25 g/plant + PSB 25 g/plant) and  $T_7$  (RDF + *Acetobacter* 25 g/plant) recorded gross monetary returns of Rs 7,11,907 and 6,81,020 respectively and were at par with each other. The highest net monetary income was obtained under  $T_1$  which was statistically at par with treatment  $T_2$ . The net monetary income from  $T_1$  and  $T_2$  was Rs 5,31,126 and 5,08,846 respectively. The

Table 1. Economics of banana production as influenced application by different *Gluconacetobacter diazotrophicus* (pooled mean for 2012-13, 2013-14 and 2014-15)

| Treatment          | Average yield (MT/ha) | Cost of production (Rs/ha) | Gross monetary income (Rs/ha) | Net monetary income (Rs/ha) | B-C ratio | SVI  |
|--------------------|-----------------------|----------------------------|-------------------------------|-----------------------------|-----------|------|
| $T_1$              | 122.26                | 2,02,427                   | 7,33,553                      | 5,31,126                    | 3.62      | 0.93 |
| $T_2$              | 118.65                | 2,03,061                   | 7,11,907                      | 5,08,846                    | 3.51      | 0.89 |
| $T_3$              | 111.71                | 2,74,165                   | 6,70,267                      | 3,96,102                    | 2.44      | 0.67 |
| $T_4$              | 110.72                | 2,03,061                   | 6,64,320                      | 4,61,259                    | 3.27      | 0.80 |
| $T_5$              | 112.36                | 2,01,998                   | 6,74,173                      | 4,72,175                    | 3.34      | 0.82 |
| $T_6$              | 112.81                | 2,02,632                   | 6,76,847                      | 4,74,215                    | 3.34      | 0.82 |
| $T_7$              | 113.50                | 1,98,617                   | 6,81,020                      | 4,82,403                    | 3.43      | 0.84 |
| $T_8$              | 110.74                | 1,96,345                   | 6,64,427                      | 4,68,082                    | 3.38      | 0.81 |
| $T_9$              | 112.36                | 1,98,188                   | 6,74,147                      | 4,75,959                    | 3.40      | 0.82 |
| $T_{10}$           | 109.73                | 1,98,188                   | 6,58,400                      | 4,60,212                    | 3.32      | 0.80 |
| $T_{11}$           | 101.62                | 1,97,554                   | 6,09,740                      | 4,12,186                    | 3.09      | 0.70 |
| SE                 | 2.71                  | -                          | 16,236                        | 16,236                      | -         | -    |
| CD <sub>0.05</sub> | 7.65                  | -                          | 45,930                        | 45,930                      | -         | -    |

$T_1$  [75% N + recommended dose of P and K (RPK) + *Acetobacter* 25 g/plant + phosphate solubilizing bacteria (PSB) 25 g/plant],  $T_2$  [Recommended dose of fertilizer (RDF) + *Acetobacter* 25 g/plant + PSB 25 g/plant],  $T_3$  [Gross recommended dose of fertilizer (GRDF) + vesicular-arbuscular mycorrhiza (VAM) 25 g/plant],  $T_4$  (GRDF),  $T_5$  [75% N + 75% P + recommended dose of K (RK) + *Acetobacter* 25 g/plant + PSB 25 g/plant],  $T_6$  [Recommended dose of N (RN) + 75% N + RK + *Acetobacter* 25 g/plant + PSB 25 g/plant],  $T_7$  (RDF + *Acetobacter* 25 g/plant),  $T_8$  (75% N + RPK + *Acetobacter* 25 g/plant),  $T_9$  (RN + 75% N + RK + *Acetobacter* 25 g/plant),  $T_{10}$  (RN + 75% N + RK + PSB 25 g/plant),  $T_{11}$  (75% N + 75% P + RK + *Acetobacter* 25 g/plant)

SVI: Sustainability value index, Average selling price of banana fruits= Rs 6,000/MT

highest B-C ratio (3.62) was also recorded under treatment T<sub>1</sub> showing the saving of 25 per cent nitrogen through chemical fertilizer.

The highest SVI was recorded under T<sub>1</sub> (0.93) followed by T<sub>2</sub> (0.89) hence these treatments are recommended for banana production. Similar findings have been reported by Pujari et al (2010), Venkatarayappa et al (1979), Badgujar and Deshmukh (2013) and Badgujar et al (2018a, 2018b) in banana.

## CONCLUSION

It is concluded that the application of 75 per cent recommended dose of nitrogen along with recommended doses of P<sub>2</sub>O<sub>5</sub> and K<sub>2</sub>O through chemical fertilizers with 10 kg farm yard manure + 25 g *Acetobacter* + 25 g PSB per plant was beneficial to save 25 per cent of chemical nitrogen and to get highest sustainable returns from banana crop.

## REFERENCES

Anonymous 2018. India is the largest producer of banana in the world. Current Trigger, 18 Feb 2018.

Badgujar CD and Deshmukh SS 2013. Productivity of banana-based intercropping system. Priinfolet **10(4c)**: 1557-1558.

Badgujar CD, Patil BB and Patil MS 2018a. Banana economics: under different crop regulation treatments and fertilizer regimes. Trends in Biosciences **11(21)**: 3008-3019.

Badgujar CD, Patil BB and Patil MS 2018b. Sustainability yield index and productivity index of Grand Naine banana as influenced by months of planting. Trends in Biosciences **11(21)**: 2973-2975.

Panse VG and Sukhatma PV 1985. Statistical methods for agricultural workers. 4<sup>th</sup> edn, ICAR, New Delhi, India.

Pujari CV, Marbhal SK, Pawar RD and Badgujar CD 2010. Effect of bio-regulators and different levels of N and K on finger size and yield of banana cv Grand Naine (AAA). Asian Journal of Horticulture **5(2)**: 453-457.

Singh RP, Das SK, Bhaskaran UM and Reddy MN 1990. Towards sustainable dryland agricultural practices. ICAR- Central Research Institute for Dryland Agriculture, Hyderabad, Telangana.

Venkatarayappa T, Narasimham B and Venkatesan C 1979. Effect of potassium dihydrogen phosphate applied after shooting on the development and compression of banana fruits. Mysore Journal of Agricultural Sciences **13**: 428-432.