

Performance evaluation of pre-release sweet corn hybrids under varying plant density and nutrient levels

AP SIVAMURUGAN and R RAVIKESAVAN

Department of Millets, Tamil Nadu Agricultural University, Coimbatore 641003 Tamil Nadu, India

Email for correspondence: apacsivamurugan@gmail.com

© Society for Advancement of Human and Nature (SADHNA)

Received: 26.08.2021/Accepted: 11.12.2021

ABSTRACT

Field experiment was conducted at the Department of Millets, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu during kharif 2019 to evaluate the performance of pre-release sweet corn hybrids under varying plant density and nutrient levels. The soil was sandy clay loam, low in available N, medium in available P and high in available K. The experiment was laid out in split-split plot design. In the main plot, two plant densities viz 60 cm x 20 cm and 60 cm x 15 cm, in the sub-plot, two nutrient levels viz 100 per cent RDF (120:60:45 NPK kg/ha) and 150 per cent RDF (180:90:68 NPK kg/ha) and in the sub-sub-plot, two pre-release sweet corn hybrids viz Nuzi 260 and Misthi were tried in three replications. Based on the results of experimentation it was found that among the sweet corn hybrids, NUZI 260 was the most promising hybrid under a spacing of 60 cm x 20 cm with application of 150 per cent recommended dose of fertilizer ie 180:90:68 NPK kg/ha.

Keywords: Sweet corn; hybrids; planting density; nutrient levels; yield

INTRODUCTION

Sweet corn is gaining popularity among the farmers owing to increasing demand in the market as it has more sweetness with a sugar content of 16-18 per cent compared to other specialty corn (Sahoo and Mahapatra 2004). Besides sweetness, it is rich in carbohydrate especially water soluble polysaccharide, vitamins having considerable amount of dietary fibre and potassium (Santos et al 2014). It is rich in antioxidants and carotenoids like xanthophyll, lutein and zeaxanthin thus protecting from various diseases (More et al 2018, Ozata 2019). The green cobs are consumed as raw or used for preparing soup, syrup, jam, cream, paste etc and the stover is used for feeding milch animals as green fodder due to its greenness even after the harvest of cobs.

Genetic makeup, environment and agro-techniques are the key factors in determining the yield of sweet corn. Proper selection of sweet corn varieties or hybrids with appropriate plant density ensures desirable yield (Kara and Atar 2013). In respect of environmental factors, temperature and rainfall or irrigation play a vital role in influencing yield of sweet

corn. Cultivation of sweet corn in a suitable season provides congenial environment thus favouring yield. Improper distribution of rainfall during cropping period leads to decline in yield which can be averted through supplemental irrigation. Maximum genetic potential of sweet corn can be exploited by growing it under irrigated condition. Amongst agro-techniques, plant density and nutrient management are the deciding factors in enhancing its yield (Saleem 2003). Kumar and Chawla (2018) reported that plant density significantly influenced the yield components consequently yield of sweet corn. Recommended plant density results in effective utilization of resources leading to improved growth and development of crop. Being an exhaustive and nutrient-mining crop, it removes more quantities of macro and micronutrients from the soil (Akpan and Udo 2017). Insufficient supply of nitrogen influences absorption and translocation of other nutrients resulting in yield reduction (Haque et al 2001). Thus yield of sweet corn can be enhanced through supply of nitrogen, phosphorus and potassium in adequate amount and time. Hence the present study was conducted to evaluate the performance of pre-release sweet corn hybrids under varying plant density and nutrient levels.

MATERIAL and METHODS

Field experiment was conducted at the Department of Millets, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu during kharif season 2019 to evaluate the performance of pre-release sweet corn hybrids under varying plant density and nutrient levels. The soil was sandy clay loam, low in available N, medium in available P and high in available K. The experiment was laid out in split-split plot design. In the main plot, two plant densities viz D₁ (60 cm x 20 cm) and D₂ (60 cm x 15 cm), in the sub-plot, two nutrient levels viz N₁ (100% RDF- 120:60:45 NPK kg/ha) and N₂ (150% RDF- 180:90:68 NPK kg/ha) and in the sub-sub-plot two pre-release sweet corn hybrids viz H₁ (Nuzy 260) and H₂ (Misthi) were tried in three replications. Observations on plant height at harvest, days to 50 per cent tasseling, days to 50 per cent silking, green cob yield, green fodder yield and TSS were recorded.

RESULTS and DISCUSSION

Response of pre-release sweet corn hybrids to different planting density and NPK levels (Table 1)

The data reveal that planting density exerted significant influence on number of plants per ha. Higher plant density of 1,05,700 plants/ha was recorded under 60 cm x 15 cm which was significantly superior to 60 cm x 20 cm spacing. However nutrient levels and hybrids had no significant influence on the number of plants/ha. Planting densities did not evince significant influence on plant height at harvest. The observation is contrary to the finding of Nandeha et al (2016).

Application of 150 per cent RDF (180:90:68 NPK kg/ha) recorded higher plant height of 189.4 cm which was higher than 100 per cent RDF (120:60:45 NPK kg/ha). This can be ascribed to more availability of nutrients to the plants which improved the vegetative growth. The results are in accordance with the findings of Singh et al (2019). Among the hybrids, Nuzy 260 recorded higher plant height of 188.1 cm which was superior to Misthi. This might be due to genetic makeup of the hybrids.

Planting densities, nutrient levels and hybrids had significant difference in respect of 50 per cent tasseling. Tasseling (50%) was earlier in 60 cm x 15 cm, 100 per cent RDF and in Nuzy 260. This can be ascribed to more competition for resources like space,

water, light and nutrients. There was no effect of treatments of 50 per cent silking. The results are in conformity with the findings of Kumar et al (2007). There was no significant influence of nutrient level and hybrids on number of cobs per ha. Whereas number of cobs per ha was significantly influenced by planting density. Among them, 60 cm x 15 cm spacing recorded higher number of cobs per ha than 60 cm x 20 cm. This could be due to higher plant population per unit area. The results are in line with the findings of Mathukia et al (2014).

Planting density exerted significant influence on green cob yield. Among the planting densities, 60 cm x 15 cm spacing recorded higher green cob yield of 22,636 kg/ha which was significantly superior to 60 cm x 20 cm. This might be ascribed to higher plant population which effectively utilized the resources thus favoured higher dry matter production consequently the yield. The results are in concurrence with the findings of Kumar and Chawla (2018). Nutrient level did not evince significant influence on green cob yield. The results are contrary to the findings of Dangariya et al (2017) and Rao et al (2020) who reported increased yield with enhanced level of fertilizers. Among the sweet corn hybrids, no significant influence on green cob yield was observed.

Spacing 60 cm x 15 cm spacing recorded higher green fodder yield of 28,180 kg/ha. This might be due to higher biomass production by more plant population per unit area through effective utilization of resources. The results are in accordance with the findings of Sunitha and Reddy (2012) and Kumar and Narayan (2018). Treatment 150 per cent RDF recorded higher green fodder yield of 26,046 kg/ha. This can be ascribed to increased photosynthetic activity coupled with high rate of assimilation which enhanced the yield. Similar findings were reported by Kumar and Chawla (2018). In respect of hybrids, Misthi recorded higher green fodder yield of 26,228 kg/ha. This can be ascribed to improved vegetative growth favoured by the genetic makeup of plants. The treatments had no significant influence on TSS.

Green cob yield and economics of pre-release sweet corn hybrids (Table 2)

Among the sweet corn hybrids, Nuzy 260 recorded higher green cob yield of 23,680 kg/ha under 60 cm x 20 cm spacing with 150 per cent RDF. This was closely followed by the same hybrid under 60 cm x 15 cm spacing with 150 per cent RDF. In respect of economics, Nuzy 260 under 60 cm x 20 cm spacing

Table 1. Response of pre-release sweet corn hybrids to different planting density and NPK levels

Treatment	Plants ('000/ha)	Plant height at harvest (cm)	Days to 50% tasseling	Days to 50% silking	Cobs ('000/ha)	Green cob yield (kg/ha)	Green fodder yield (kg/ha)	TSS (%)
Main plot (plant density)								
D ₁	79.4	187.6	51.4	52.2	74.7	20,247	22,946	17.3
D ₂	105.7	186.4	48.8	51.4	100.0	22,636	28,180	18.1
CD _{0.05}	7.7	NS	0.9	NS	6.6	1,062	2,113	NS
Sub-plot (nutrient level)								
N ₁	92.8	184.6	46.9	51.6	87.9	19,747	25,080	17.6
N ₂	92.3	189.4	49.3	52.0	86.8	23,135	26,046	17.8
CD _{0.05}	NS	2.94	1.7	NS	NS	NS	382	NS
Sub-sub-plot (hybrid)								
H ₁	92.0	188.1	46.3	51.0	86.9	22,053	24,898	17.7
H ₂	93.1	185.9	49.8	52.6	87.7	20,829	26,228	17.8
CD _{0.05}	NS	2.1	1.4	NS	NS	NS	1,019	NS

D₁: 60 x 20 cm, D₂: 60 x 15 cm; N₁: 100% RDF- 120:60:45 NPK kg/ha, N₂: 150% RDF- 180:90:68 NPK kg/ha; H₁: Nuzi 260, H₂: Misthi

with 150 per cent RDF registered the highest net return (Rs 1,12,810/ha) and B-C ratio (3.12).

CONCLUSION

Based on the results of experimentation, it is concluded that among the sweet corn hybrids, Nuzi 260 was found to be the most promising hybrid under a spacing of 60 cm x 20 cm with application of 150 per cent recommended dose of fertilizer ie 180:90:68 NPK kg/ha.

REFERENCES

Akpan EA and Udoh VS 2017. Effects of fertilizer levels on growth and yield attributes of three dwarf sweet corn varieties [*Zea mays* (L) *saccharata* strut] in Itu Flood

Table 2. Green cob yield and economics of pre-release sweet corn hybrids

Treatment	Green cob yield (kg/ha)	Net return (Rs/ha)	B-C ratio
D ₁ N ₁ H ₁	19,327	79,043	2.56
D ₁ N ₁ H ₂	15,907	72,588	2.43
D ₁ N ₂ H ₁	23,680	1,12,810	3.12
D ₁ N ₂ H ₂	21,233	1,05,565	2.98
D ₂ N ₁ H ₁	22,862	1,09,670	3.08
D ₂ N ₁ H ₂	22,463	1,06,158	3.01
D ₂ N ₂ H ₁	24,010	1,15,443	3.09
D ₂ N ₂ H ₂	21,298	1,08,611	2.97

D₁: 60 x 20 cm, D₂: 60 x 15 cm; N₁: 100% RDF- 120:60:45 NPK kg/ha, N₂: 150% RDF- 180:90:68 NPK kg/ha; H₁: Nuzi 260, H₂: Misthi

Plain, Akwalbom State, Nigeria. Canadian Journal of Agriculture and Crops **2(1)**: 60-67.

Dangariya MV, Dudhat MS, Baivalgave VG and Thanki JD 2017. Growth, yield and quality of rabi sweet corn as influenced by different spacing and fertilizer levels. International Journal of Agricultural Sciences **13(1)**: 38-42.

Haque MM, Hamid A and Bhuiyan NI 2001. Nutrient uptake and productivity as affected by nitrogen and potassium application levels in maize/sweet potato intercropping system. Korean Journal of Crop Science **46(1)**: 1-5.

Kara B and Atar B 2013. Effects of mulch practices on fresh cob yield and yield components of sweet corn. Turkish Journal of Agriculture and Forestry **37(3)**: 281-287.

Kumar A and Narayan A 2018. Influence of planting methods, spacing and fertilization on yield and quality of sweet corn (*Zea mays* L). International Journal of Current Microbiology and Applied Sciences **7(Special Issue)**: 1232-1237.

Kumar M and Chawla JS 2018. Evaluation of sweet corn genotypes for green cob and fodder yield under different levels of nutrient and plant spacing. Forage Research **44(2)**: 111-114.

Kumar MAA, Gali SK and Hebsur NS 2007. Effect of different levels of NPK on growth and yield parameters of sweet corn. Karnataka Journal of Agricultural Sciences **20(1)**: 41-43.

Mathukia RK, Choudhary RP, Shivran A and Bhosale N 2014. Response of rabi sweet corn to plant geometry and fertilizer. Current Biotica **7(4)**: 294-298.

More PG, Thakre SM and Khodke SU 2018. Quality assessment of microwave blanched sweet corn kernels. International Journal of Agricultural Engineering **11(1)**: 164-167.

Nandeha N, Dewangan YK and Sahu P 2016. Effect of crop geometry and nutrient management on yield performance of sweet corn (*Zea mays L saccharata*) under Chhattisgarh plain ecosystem. Bioscan **11(4)**: 2293-2295.

Ozata E 2019. Evaluation of fresh ear yield and quality performance in Super sweet corn. International Journal of Life Sciences and Biotechnology **2(2)**: 80-94.

Rao BM, Mishra GC, Mishra G, Maitra S and Adhikari R 2020. Effect of integrated nutrient management on yield and economics in summer sweet corn (*Zea mays L var saccharata*). International Journal of Agriculture, Environment and Biotechnology **8(2)**: 141-144.

Sahoo SC and Mahapatra PK 2004. Response of sweet corn (*Zea mays*) to nitrogen levels and plant population. Indian Journal of Agricultural Sciences **74(6)**: 337-338.

Saleem A 2003. Response of maize cultivars to different NP- levels under irrigated condition in Peshawar valley. Pakistan Journal of Biological Sciences **6(14)**: 1229-1231.

Santos PHAD, Pereira MG, Trindade RDS, da Cunha KSD, Entringer G and Vettorazzi JCF 2014. Agronomic performance of Super sweet corn genotypes in the north of Rio de Janeiro. Crop Breeding and Applied Biotechnology **14(1)**: 8-14.

Singh JK, Bhatnagar A, Prajapati B and Pandey D 2019. Influence of integrated nutrient management on the growth, yield and economics of sweet corn (*Zea mays saccharata*) in spring season. Pantnagar Journal of Research **17(3)**: 214-218.

Sunitha N and Reddy PM 2012. Effect of graded nutrient levels and timing nitrogen application on yield and quality of sweet corn (*Zea mays L*). Madras Agricultural Journal **99(4-6)**: 240-243.